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". ABSTRACT

Sufficient conditions for uniform integrabilitv in the regenerative

central limit theorem (CLT) are obtained. The result is used to show the

equality of two different representations for the variance constant

appearing in the CLT, as well as to study the asymptotic moment structure

of the regenerative variance estimator.
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1. • INTRODUCTION

Let X - (X(t) - t > O} be a real-valued stochastic process

representing the output of a simulation. (To incorporate discrete-time
sequences {X : n > 0) into our framework, we set X(t) - X where

n N ti
[t] is the greatest integer less than or equal to t.) Suppose that X

El
is ergodic, in the sense that there exists iL C R such that

(.1) X(t) i - I X(s)ds ->
t0

as t + -. Considerable attention has been focused, in the simulation

literature, on the problem of producing confidence intervals for the

estimand 4; this is known as the steady-state simulation problem. (See

Chapter 8 of LAW and KELTON (1983) for details.)

Virtually all methods proposed for the steady-state simulation problem

require that I obey a central limit theorem; that is, there should exist

a constant a for which .

(1.2) t 1/2 (i(t) - 1A) -> ON(0,1)

as t + *. Sufficient conditions for (1.2) are well-known. In particular,

6 conditions for the validity of (1.2) are known when X is regenerative

(SMITH (1955)), strong mixing (HALL and HEYDE (1980), PD. 127-153),

0-mixing (BILLINGSLEY (1968), pp. 166-193) and associated (NEWMAN and

WRIGHT (1981)).

Recently, several contributions to the steady-state simulation problem

have required a moment version of (1.2):
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(1.3) E{[tl/ 2(i(t) I )] k) + kEN(O,1)k

Of course, relation (1.3) is a statement about uniform integrability in the

limit theorem obtained by taking the kth power of both sides of (.2.

In this paper, it is our intention to establish (1.3) for the class of

regenerative processes satisfying a relatively mild moment assumption,

thereby shoving that (1.3) is a condition which is in force for a large

class of steady-state simulations. In particular, since general state

space Markov chains can frequently be made regenerative (see ATHREYA and

NEY (1978)), the uniform integrability result obtained here applies to a

larger class of simulations than one would initially expect.

As indicated previously, (1.3) is a limit theorem which enjoys a

number of simulation-related applications:

(i) limit theory for the method of replications (see GLYNN (1986));

(ii) efficiency of conditional Monte Carlo for semi-Markov processes

(see FOX and GLYNN (1986));

(iii) large-sample theory for indirect estimation via L = XW (GLYNN

and WHITr (1986));

(iv) asymptotics for control variates as applied to steady-state

simulation (see CLYNN and IGLEHART (1986a));

(v) large-sample theory for confidence intervals (GLYNN And IGLERART

(1986b)).

In this paper, we shall also present several additional applications 41

of uniform integrability to simulation. Both applications concern the

constant a appearing in (1.2); as is well known, estimation of a is the

central problem in producing steady-state confidence intervals for L.
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Loosely speaking, the first application of uniform integrability involves

showing that a has two different representations, corresponding to

whether X is viewed as a regenerative process or an (asymptotically)

stationary process. The second topic concerns the asymptotic variance of

the regenerative variance estimator for a.

This paper is organized as follows. Section 2 is devoted to precise

statements of the main results of this paper, while Sections 3 to 5 con-

tain the proofs of the results discussed in Section 2.

2. STATEMENT OF MAIN RESULTS

Let I = {X(t): t > 0) be a (possibly) delayed real-valued regenera-

tive process with regeneration times 0 ( T(O) < T(1) < .... For conveni-

ence, set T(-1) - 0, and let

T(i)
Y, f X(s)ds

T(i-i)

T(i)
= f IX(s)lds ,and
T(i-i)

i= T(i) - T(t-I).

Then, if E( 1 + 1 < *, it is well known (see, for example SMITH

(1955)) that the strong law version of (1.1) holds, namely

i(t) a.s.

as t w , where L " EY'C I .  If, furthermore, E( + T ) thenthe YE~ 1.then

the central limit theorem (1.2) is valid (see [181):

3
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(2.0) t /(1(t) - 1) 0> ON(O,l)

where a (Ez 2/E )1/2 and Z i - i" Our first result gives con-

th mmn nfrlditions under which the left-hand side of (2.1) is p moment uniformly

integrable.

(2.2) THEOREM. For p (Y 2+ if E + +p + ?TP) < * then
_0 1 0 1

(t P/21R(t)-IP: t > 0) is uniformly integrable.

An immediate corollary to this result are conditions which allow one

to interchange limit and expectation in (2.1).

(2.3) COROLLARY. For p > 2, ifE( + + + TP) < then0 1 0 1

for 0 < a < p,

(2.4) t. 2 EIR(t-04 aEIN(O,0)1

as t +*.

For p -2, (2.4) has been studied previously by CHUNG (1966), p. 102

(the proof given there in the Markov chain case easily extends to the

regenerative setting), and by SMITH (1955). Our result weakens the condi-

tions given there somewhat, and extends the result to p > 2.

We now turn to describing the first of the two applications mentioned

in Section 1. The limit theorem (2.1) shows that the constant a may be
2 2

computed via a2  EZI /E-10 An alternative representation for a may be

obtained by taking limits in (2.4) with p- 2:

(2.5) tE(X(t)-4) 2 * 2

4
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as t * *. The left-hand side of (2.5) has a particularly convenient form

if I is a stationary regenerative process. If X is stationarv regener-

ative under P, then (E(°) denotes expectation relative to P)

2 t

(2.6) tE(X(t)-P)2  2 f (I - E((X(O)-&) °  s)-O)ds
0

Letting t + , one would formally expect that

2 . 2 f i((X(O)-)(X(s)-))ds

0

Our first application concerns finding precise conditions under which

2(2.7) EZ /E~l - 2 f E((X(O)-P)(X(s)-L))ds
0

where P is the stationary version of the regenerative process associated

with P. (See HEYMAN and SOBEL (1982), pp. 374-379.)

(2.8) THEOREM. Suppose either that:

(i) has a Lebesgue density component in its distribution, I is

3 .bounded, and ET1 < -, or

(ii) T has an aperiodic distribution concentrated on {1,2, ... )

and E(Y 1 + T) <.

Then, (2.7) is valid.

An important special case of Theorem 2.8 is obtained by specializing

to Markov processes. Let Y - {Y(t): t > 0) be an irreducible positive

recurrent continuous-time Markov chain on state space S c Z+  (0,1,2, ... }.

5
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Given a bounded real-valued function f defined on S, set X(t) = f(Y(t)).

For fixed i C S, let T(O) - inf{s > 0: Y(s) - i, T(n) - inf{s > T(n-):

Y(s-) A i, Y(s)- i for n > 1. The sequence {T(n): n > 01 consti-

tutes regeneration times for . Since T I has a density, Theorem 2.R (i)

applies and we get the following corollary.

'N 3(2.9) COROLLARY. Suppose EiT(1) <. Then

T(1) f- .

(2.10) E U(T (f (Y(S) )1Il)ds )2/E T(1) -2 1o E (f(Y(0))-4)(fCY(s))-4)dsiO0 0 i

where P - Exf(X(O)) (the integral on the right-hand side of (2.10)

converges absolutely).

Our second application concerns the regenerative estimator for the

constant a appearing in (2.1). It is well known that if E( + T2) <

then

t" (Y k (t) )2 N(t) 1

v(t) = k-1 

.i

0 ; N(t) > 0 U"

coverges to a2  EZ /ET1  a.s.; the estimator for 0 is then given by 4.

s~t) v~t) / 2

•(t) VW To study coverage problems associated with regenerative

confidence intervals, it is of interest to study the correlation between

the point estimate X(t) and the standard deviation estimate s(t) (see,

for example, BRATLEY, FOX, and SCHRAGE (1983), p. 113). A further

interesting point involves the variability of s(t) as a function of the

694 -b.%



regeneration state chosen. Both these questions require evaluating the

asymptotic moment structure connecting X(t) and s(t).

To study the asymptotic moment structure, we use a joint limit

'I-4 4
theorem for 1(t) and s(t); if E(Y + < -, then

(2.11) tl1/2 (X(t)-JL, s(t)-a) m>N(OC)

where N(O,C) is a bivariate normal r.v. with mean vector 0 and covari-

ance matrix C given by

EZ2 (2or)- E 2

Ev 1 (2)- (EAIZ XEZ 2 (42)-I(EA2-2XEA Z + X2 EZ )

There A, z a - 2EZl T/E l. (See GLYNN and IGLEHART (1986c.)

The continuous mapping principle, as applied to (2.11), yields

(2.12) t(s(t)-o)2 , 1/2
22 NiO,l)

and

(2.13) t(i(t)-p)(s(t)-o) -> k(N(O,C))

when k: R 2 * is defined by k(xOx 2) - XIX2* If the appropriate

uniform integrability holds, then one can pass expectations through (2.12)

and (2.13), yielding

(2.14) tE(s(t)-o)2 * (42)1 (EA 2 2XEA Z + X2EZ2

(2.15) tE(j(t)-IL)(s(t)-o) * (20)- (EA1ZI - EZ

* 'S



In other words, the covariance matrix C does legitimately correspond to

the limiting covariances associated with X(t) and s(t). This is the

content of our second application.

N
(2.16) THEOREM. If E(8 + 8 + T8 + T8) < then (2.14) and

(2.15) are valid.

Empirical evidence (see [111) indicates that the asymptotic covariance

(2a) (EAZ 1 - XEZI) is independent of the choice of the regeneration

state. While the asymptotic variance of s(t) does depend on the regener-

ation state, the variance does not appear to be minimized by choosing the

state with minimal expected inter-regeneration time. Both these issues

will be studied theoretically in a future paper.

3. PROOF OF THEOREM 2.2

We will show that the collection of r.v.'s A - {tP/2!X(t)-pIP: t > 0}

is dominated by a uniformly integrable family, thereby showing that A is

uniformly integrable.

Let N(t) - max{k > -1: T(k) < t}, and write

t N(t)+2 T(N(t)+2)

SXc(S)ds I Zk J Xc(s)ds
0 k=O t

-'- where X (t) - X(t) - P. Then,

f t < xN(t +2 T(N(t)+2)

(3.1) X X(s)dsIp < ( Zk + IZ0 - X (s)dsl)
0 k-I t

N( t +2
IC +2 +p .+

5 k k + 0 + UN(t)+l + UN(t)+2ek- 1

8
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where U " + l Observe that for non-negative numbers

a (1 < i < k), 1E atI p < Ik max a t Ip  kp  max ap < kp
l <i<k l <i<k

E kl ap, and hence it follows from (3.1) that
-%

NH(t ""
(3.2) tP/2 lx(t)- IP < 4P- k-1 Zk + Up + UN(t)+l + U (t)+2)

k-i 02 N(t)+ 1 2t

< 4- -k-6 I ZIP + up)
k-1 k + k=O k

We will now prove that the right-hand side of (3.2) is uniformly integra-

ble. First, observe that since E(YP +%P) < -, it is immediate that
1 1

EUP < ", and so the strong law of large numbers applies, yielding

n p +- U EUP a.s.
"n-1

Since N(t)/t * (ET)- a.s., a simple argument proves that a.s.

N(t +2 EUP/E'I p- 2t - p /2  up U 1 _

k=O 0 p > 2.

The continuous mapping principle and converging-together lemma (BILLINGSLEY

(1968), pp. 25 and 31) prove that

~ p 2 (N(t +2 zkP+N(t +2 up) IN(> 1)1 + EUP/ET 1 ,pin2
# i (3.3) t-P2 Zk  U M>':

k-i k-O oPIN(0,1)il p  p > 2.

By Corollary 2 (ii) of CHOW et al. (1979) (see also JANSON (1983),

Theorem 2.3)

' pi
9
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N(t r+2
t- p/ 2 • i( Zk1p) + OPEIN(0,1)P .p

k-I

On the other hand, Wald's identity applies to the sum in the Uk'S, yielding

NC 0+2
E( UP) - EUg + E(N(t)+2)EU~p

The elementary renewal theorem then gives

p N(t+2 (EU/EC p 2
k-O 0 p> 2.

Consequently, the limit theorem (3.3) also holds in expectation. Thus,

Theorem 5.4 of [21 shows that the right-hand side of (3.2) is uniformly

integrable, proving the theorem.

4. PROOF OF THEOREM 2.8

The proof has two parts; we first prove that (2.5) is valid under

by appealing to Theorem 2.2, followed by showing that the obvious limit

relation is valid on the right-hand side of (2.6).

Given that X is regenerative under P, X is stationary regenerative

under P, where

(4.1) P{X e . - E(f T(X o e c -)ds}
TE% T(O)+s'-.e" 1 T(O)

(x o atis the stochastic process {X(t4-s): s > 0}). In order to apply

Theorem 2.2, we need to show that k-2 +2 + ,2 +l 2 * The
iv0 1 0 1

10i ,
9.
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distribution of X from the first cycle onwards is identical under both P

and P and hence

EY2 EY <

Some care is needed for the zero-th cycle, however. From (4.1), it follows

that

T(1) T(1)
EU I(f IX(u) Idu c .)ds)

1 T(O) T(O)+s

Hence

T(1) T(O)
EY - E{f (I IX(u) Idu)2ds} < E{'T } •
0 E 1  T(0) T(O)+s -Er 1

u2 /3 3 2/3-3

By Holder's inequality, ET < El * E YI < * by hypothe-

sis. A similar analysis shows that

T(O)
2 1 E(f (T(1)-s)2ds)

1 T T(O)

T

3E 1

proving that E(Y1 + 3) <_ suffices to guarantee that

t : (t- 2  2

P-.

as t " .



To prove the validity of taking formal limits in (2.6), it is enough

to show that the integrand on the right-hand side of (2.6), namely

(1 -2) •(X (O)x(a)) I(s < t)
t C

is absolutely dominated by an integrable function. In other words, we are

done if we prove that

(4.2) f IEXc (O)X c (s) ds <
01

Now, the left-hand side of (4.2) is itself dominated by

m s)

(4.3) f 1EX (O)X (S)I(T(O) > a)Ids + f JEX (O)X (s)I(T(O) < Ids
. . 0 0

The first integral in (4.3) can be bounded by

* T(0)
I EX c(O)X c(s) I(T(O) > s)ds E. Ix ((O)X(S) dsa•
o

By (4.1),

T(O) TM( T
fE J" x(O)X (s) fds - E( IX ) fI fX(S) fds du)
0 1 T(O) T(O)+u

TM1
< -'1.. E(J Ix (u) Idu) 2

EI T(O) c

S": 1+ lul'
E'9t

which is finite by hypothesis. We now turn to the second term in (4.3).

Observe that

12 i



EX c (O)X c (s)I(T(O) < s)

. Is E{X (O)X c(s) IT(O) - u} P{T(O) C du)0

- f E{X (O)IT(O) - u) EX (T(O)+s-u) P{T(O) £ du}0 c

- EX c(O)a(s-T(O))I(T(O) < s) ,

where a(*) EX c(T(O)+*). Hence, EX c(O)Xc (s)I(T(0) < s) is absolutely

dominated by EIX c(O)a(s-T(O))II(T(O) < s). By Fubini's theorem,

f ix c(O)a(s-T(O))l * I(T(O) < s)ds
0

- EIX(0)1 I fa(s-T(0))Ids
T(O)

where fIla(u) ldu. Since X is stationary under P, it is evident

that EIXc(0)f < E(Y1 + IPI'CI)/E- 1. Hence, to complete the proof of the

a. theorem, we need only show that 0 < - under our conditions.

Clearly, it is sufficient to prove that EX(T(O)+t) - is + O(t- 2)

under our hypotheses. Now, c(-) - EX(T(O)+*) satisfies the renewal equa-

tion c - b + c + F where F(dx) P(. e dx and b(t) - E{X(T(O)+t)

I(T I > t)). The solution of this renewal equation is given by c - b * U,

where U F( k ) (F ( k )  is the kt h  convolution of F). Conse-
ke0

quently, the question of whether c(t) P i + O(t- ) is equivalent to show-

ing that the rate of convergence of b * U to its limit P is O(t-).

13
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This question has been extensively studied. If F has a density compo-

nent, a sufficient condition for this relation is that (see NUMMELIN and

TUOMINEN (1983), Theorem 4.2)

f 2
(4.4) f x F(dx) < .

0

A similar argument works for discrete-time. (To verify the conditions of

[181, note that if a sequence is sumnable, the suands must converge to

zero. The continuous analog is incorrect; this explains the stronger

hypothesis in continuous time.)

5. PROOF OF THEOREM 2.15

We first observe that (X(t)-P) : t > 0) is uniformly integrable

under our conditions. (Theorem 2.2.) Note that

t(R(t)-0)(s(t)-a) < (1/2)[t(i(t)- 
2 + t(s(t)-0)2

so that the uniform integrability of {t(X(t)-)(s(t)-0): t > 0) willI2
follow immediately from uniform Integrability of (t(s(t)-a)2: t > 0) (see

bP: p. 100 of [61).

To obtain uniform integrability of (t(s(t)-a)2: t > 0), we use the

-following lema.

. 4(5.1) LEMMA. For x >0 , a > 0, (x -a) < (4+G-2)_(x-o2)2 .

,4 PROOF. We look at two cases: x < a2/2 and x > o2/2. If 0 < x < o2/2,

then Ixl/2-(F2 - l-o_( 2 - 4(02/4) < 4( x-o2)2. On the other hand, if

x > a 2/2, then we use Taylor's formula to yield

14



Ix1 (a2)1/2, 1 I-21

x2) 212

where C lies between x and a2 Since x > a2/2, it follows that

-1/2 1/2la and hence

/Ixl2 a1o2 <1xo21

for x > 02/2. The inequality follows immediately by combining the bounds

for the two cases.

The lemma shows that t(s(t)-o)2 < (4 + I/o2)t(v(t)-) 2 . Our proof

is therefore complete if we prove that (t(v(t)_02)2: t > O) is uniformly

integrable. We expand v(t) - 2  as

2 Nt) Nit)
Vt t- a- Ak + 2(P-X(t)) Tk-i

tki l  k

labI< 2+ b2 onecan (E~Ii 12 < 2  1 Nit) (sjScin3 n
a o2(t-T(N(t)))/t.

Thus, using the inequality ( Iaj)2 < k2  k 2ai

_abj _ a b one can bound t(v(t)-2)2  by

Aw.Mp% .15
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(5.2) t(v(t)- 2 ) 2 < 16 t-N C) 2j
k-I1

+32 t 2(i(t)-;k)4

N(t)
14

k- I

+ 16 t2(X(t)L

+ 16(1~ Nit) 2~)4
k- I

N(t)+1
4 2+ 16 a .i k/t

k-i
k-1*

The second and fourth terms above are uniformly integrable, by Theorem

2.2. The uniform integrability of the sixth term is an easy consequence of

Wald's identity. For the first term, observe that

-1 Nit) A 2< tl N(t +2 Ak2 N(t+2 2
(5.3) t ~( ) t ( ~ ~ 2+ Aj]

k-I k-1 k-i

Uniform integrability of the first term on the right-hand side of (5.3)

* follows from Theorem 2 (i1) of [4), whereas uniform integrability of the

second term is immnediate from Wald's identity.

Similar arguments hold for the remaining terms In (5.2).

16
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